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Abstract. In this paper we introduce a new discrete family of distributions. A scale family of dis-
tributions with scale parameter σ is generalized by introducing an additional parameter α > 0 using
an approach due to Marshall and Olkin (1997). Based on this generalized scale family of distributions
a new discrete family of distributions is introduced. The new discrete family of distributions includes
discrete exponential, discrete half-logistic, discrete Rayleigh, discrete Weibull and many other discrete
distributions. Some distributional properties of the proposed family are reported. Generalized discrete
exponential distribution is discussed in detail.

1. Introduction

Most of the lifetime models that have been proposed to represent the lifetime data assume random
variables to be continuous. However, sometimes it is impossible or inconvenient to measure the life length
of a device on a continuous scale. In practice, we come across situations, where lifetimes are available
on a discrete scale. In the recent past, special roles of discrete distributions are getting recognition from
survival analysts. In fact, for many equipments and components, lives are being measured by number of
completed cycles of operation. Even for a continuous life measure, records made at periodic time points
result in a situation where a discrete model may become more appropriate. It is therefore required to develop
suitable discrete life distributions to model such situations. The present paper deals with construction of
a discrete family of distributions using a suitable family of continuous distributions. In the past, many
authors have derived construction of discrete distribution from continuous distribution. Nakagawa and
Osaki (1975) obtained discrete Weibull distribution, Roy (2004) analyzed the discrete Rayleigh distribution,
Kemp (2008) examined the discrete half-normal distribution, Krishna and Singh (2009) obtained the Burr
discrete distribution, Gomez-Deniz (2010) reported a new generalization of the geometric distribution and
Gomez-Deniz and Calderin (2011) have reported the discrete Lindley distribution. Other procedures to
generate discrete distributions are presented in Rodriguez-Avi et al. (2003, 2004). Nekoukhou et al. (2011)
obtained discrete generalized exponential distribution of a second type. Sandhya and Prasanth (2013, 2014)
have considered generalisations of geometric and discrete uniform distributions invoking the approach of
Marshal and Olkin (1997) while Sandhya and Prasanth (2012) has developed another generalisation of the
discrete uniform distribution by adding two parameters to it, generalizing the Marshal-Olkin scheme itself.

In this paper we introduce a new discrete family of distributions, which contains two parameters σ and
an additional parameter α > 0. A new discrete family of distributions includes discrete exponential, discrete
half-normal, discrete half-logistic, discrete Rayleigh, discrete Weibull and many other discrete distributions.
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In Section 2, we introduce a new discrete family of distributions. Some probabilistic properties and
other results are also studied. In Section 3, maximum likelihood estimators of the parameters involved
in new discrete family of distributions are discussed. In Section 4, we obtain some discrete distributions,
which are members of newly introduced discrete family of distributions. Section 5 is devoted to a study
of generalized discrete exponential distribution which is a member of new discrete family of distributions.
We also state some properties of generalized discrete exponential distribution using properties of discrete
family of distributions in the same section. Maximum likelihood estimators of the parameters involved in
this distribution are discussed. Two data sets are used to illustrate the goodness of the proposed model. In
the last section conclusions are given.

2. A new discrete family of distributions

A methodology to add a parameter to obtain a new family of distributions is introduced by Marshall
and Olkin (1997). They derived a new family of distributions with survival function given by

S(t) ≡ S(t;α) =
αF (t)

1− αF (t)
, (1)

where α > 0, α = 1 − α and F (t) is a survival function. In particular, when α = 1, S(t) = F (t). Using
this methodology, Marshall and Olkin (1997) constructed a generalization of the exponential and Weibull
distributions. Recently, Gomez-Deniz (2010) obtained a new generalization of the geometric distribution
by discretizing the generalized exponential distribution of Marshall and Olkin (1997) and Gomez-Deniz et
al. (2014) obtained a discrete version of the half-normal distribution and reported its generalization with
applications.

Here, we consider the class of continuous scale family of distributions with scale parameter σ > 0 and
we will denote probability density function and the cumulative distribution function (cdf) of the same by
g(·|σ) and G(·|σ) respectively.

The survival function of our new scale family of continuous distributions on the positive real line using
(1) is given by

S(t;α, σ) =
αG(t|σ)

1− αG(t|σ)
, (2)

where G(t|σ) = 1 − G(t|σ). The survival function (2) can be considered as a generalization of the scale
family of distributions and we will write the corresponding family of distributions by GSF (α, σ).

Let X be a discrete random variable associated to a continuous random variable belonging to GSF (α, σ).
The probability mass function (pmf) is given by

P (X = x;α, σ) = px = S(x;α, σ)−S(x+1;α, σ) =
α[G(x|σ)−G((x+ 1)|σ)]

(1− αG(x|σ))(1− αG((x+ 1)|σ))
, x = 0, 1, 2, . . . (3)

where α > 0, α = 1− α and σ > 0. We denote this distribution by X ∼ DF (α, σ).

Lemma 2.1. The cdf of a discrete random variable having the pmf (3) is given by,

F (x;α, σ) =
1−G((x+ 1)|σ)

1− αG((x+ 1)|σ)
, x = 0, 1, 2, . . .

and

P (X ≥ x;α, σ) =
αG(x|σ)

1− αG(x|σ)
, x = 0, 1, 2, . . .

Proof. It is straightforward.
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Remark 2.2. Hazard rate function corresponding to DF (α, σ) is given by

r(x;α, σ) =
G(x|σ)−G((x+ 1)|σ)

G(x|σ))(1− αG((x+ 1)|σ))
.

Lemma 2.3. The probability generating function (pgf) of a discrete random variable having the DF(α, σ)
in equation (3) is given by,

Px(s) = 1 + α(s− 1)

∞∑
x=1

sx−1
G(x|σ)

1− αG(x|σ)
.

Proof. Omitted for brevity.

Lemma 2.4. Mean and variance of random variable having DF(α, σ) are respectively

µ(α, σ) = E(X) = α

∞∑
x=1

G(x|σ)

1− αG(x|σ)
,

V (X) = α

∞∑
x=1

(2x− 1)
G(x|σ)

1− αG(x|σ)
−

(
α

∞∑
x=1

G(x|σ)

1− αG(x|σ)

)2

.

Proof. It is easy to obtain using Lemma 2.3.

Lemma 2.5. The recurrence relation for generating probabilities of DF(α, σ) is given by

px+1 =
G((x+ 1)|σ)−G((x+ 2)|σ)

G(x|σ)−G((x+ 1)|σ)
· 1− αG(x|σ)

1− αG((x+ 2)|σ)
px, x = 0, 1, 2, . . .

where p0 = 1−G(1|σ)
1−αG(1|σ) .

Proof. It is straightforward.

Lemma 2.6. Quantile xv and median x0.5 of DF(α, σ) are respectively given by

xv =

[
σG−1

(
αv

1− αv

)
+ 1

]
,

x0.5 =

[
σG−1

(
α

1 + α

)
− 1

]
,

where [·] denotes the integer part.

Proof. The above expressions can be obtained easily using Lemma 2.1.

Theorem 2.7. If ∂G(x|σ)
∂σ > 0 then the mean is monotonic increasing function of both parameters α and σ.

Proof. We note that

∂µ(α, σ)

∂α
=

∞∑
x=1

G(x|σ)(1−G(x|σ))

(1− αG(x|σ))2
> 0,

and

∂µ(α, σ)

∂σ
=

∞∑
x=1

αG
′
(x/σ)

(1− αG(x|σ))2
> 0,

if G
′
(x|σ) = ∂G(x|σ)

∂σ > 0. Hence the proof.
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In the following we report some results which are consequence of methodology due to Marshall and Olkin
(1997).

Lemma 2.8. Let S1(t) = αF (t)

1−α F (t)
and S2(t) = βG(t)

1−β G(t)
. Then S1(t) = S2(t) if and only if G(t) = kF (t)

1−k F (t)
,

where k = α
β , β = 1− β and k = 1− k.

Proof. Suppose, S1(t) = S2(t) then

G(t)F (t)

F (t)G(t)
=
α

β
= k. (say)

Hence we get,

G(t) =
kF (t)

1− k F (t)
.

Now suppose

G(t) =
kF (t)

1− k F (t)
then G(t)F (t) = kF (t)G(t).

Letting k = α/β, we have that

αF (t)− βG(t) = (α− β)F (t)G(t),

αF (t)− βG(t) = (α− αβ + αβ − β)F (t)G(t),

αF (t)

1− αF (t)
=

βG(t)

1− β G(t)
.

Hence the converse holds.

Lemma 2.9.

Si(t) =

(∏i
j=1 αj

)
S0(t)

1− (1−
∏i
j=1 αj)S0(t)

, i = 1, 2, 3, . . .

where S0(t) is a survival function and αj > 0.

Proof. We prove this theorem by method of induction. Let survival function of a new family of distributions
by Marshall and Olkin (1997) be given by

S1(t) =
α1S0(t)

1− (1− α1)S0(t)
, (4)

where S0(t) is a survival function.
Using equation (4) we can obtain a new survival function S2(t) by introducing parameter α2 as

S2(t) =
α2S1(t)

1− (1− α2)S1(t)
.

Using equation (4) in the RHS of above equation we get,

S2(t) =
α1α2S0(t)

1− (1− α1α2)S0(t)
.
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Hence result holds for i = 2.
Now suppose result holds for i = k. Hence,

Sk(t) =

(∏k
j=1 αj

)
S0(t)

1− (1−
∏k
j=1 αj)S0(t)

. (5)

Here Sk(t) is a survival function and hence again using equation (4) we can obtain,

Sk+1(t) =
αk+1Sk(t)

1− (1− αk+1)Sk(t)
,

where αk+1 is newly introduced parameter.
Using an equation (5) in Sk+1(t) we get,

Sk+1(t) =

(∏k+1
j=1 αj

)
S0(t)

1− (1−
∏k+1
j=1 αj)S0(t)

.

This shows that the result also holds for i = k + 1. Hence the proof.

Lemma 2.10. Let F (·) and G(·) are the survival functions of two distributions. If G = 2F
1+F

then a new

distribution obtained using G(·) with adding parameter α by method of Marshall and Olkin (1997) is the
same as that obtained by using F (·) with additional parameter β, where β = 2α.

Proof. Let S1(t) and S2(t) are the survival functions of new distributions obtained using method of Marshall
and Olkin (1997) by adding parameters α and β respectively to F (·) and G(·) we get,

S1(t) =
αG(·)

1− αG(·)
and S2(t) =

βF (·)
1− β F (·)

.

Now putting G = 2F
1+F

in S1(t) we get,

S1(t) =
2αF (·)

1− (1− 2α)F (·)
.

The proof follows by replacing 2α by β in above expression.

Using above Lemma 2.10 we get some interesting situation, which is given in the following.

Let G(t) = 2e−t/σ

1+e−t/σ
and F (t) = e−t/σ. Here G and F are the survival functions of half-logistic distribution

and exponential distribution respectively and G = 2F
1+F

. Hence the survival functions of new distributions

by adding parameters α and β respectively to G and F are given by,

S1(t) =
αG(t)

1− αG(t)
=

2αe−t/σ

1− (1− 2α)e−t/σ
,

and

S2(t) =
βF (t)

1− β F (t)
=

βe−t/σ

1− βe−t/σ
.

This shows that S1(t) = S2(t), if β = 2α. Thus half-logistic distribution and exponential distribution lead
to similar distributions by following method of Marshall and Olkin (1997).

In the following we discuss estimation of α and β for DF (α, σ).
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3. Estimation

Population moments for DF (α, σ) are in the form of an infinite series. So these equations cannot be
solved easily to get estimators based on method of moments.

So here we consider method of maximum likelihood estimation (MLE). Suppose x1, x2, . . . , xn is a random
sample of size n obtained from DF (α, σ). The log-likelihood function is given by

logL = n logα+

n∑
i=1

log(G(xi|σ)−G((xi + 1)|σ))−
n∑
i=1

log(1−αG(xi|σ))−
n∑
i=1

log(1−αG((xi + 1)|σ)).

Hence the likelihood equations are

∂ logL

∂α
=

n

α
−

n∑
i=1

Gx

1− αGx
−

n∑
i=1

Gx+1

1− αGx+1

, (6)

∂ logL

∂σ
=

n∑
i=1

G
′
x −G

′
x+1

Gx −Gx+1

+ α

n∑
i=1

G
′
x

1− αGx
− α

n∑
i=1

G
′
x+1

1− αGx+1

, (7)

where Gx = G(xi|σ), G
′
x = ∂G(xi|σ)

∂σ .
Solving equations (6) and (7) simultaneously, we get maximum likelihood estimators α̂ and σ̂ of α and

σ respectively. MLE’s can be obtained by numerical method.
The second order partial derivatives are given below.

∂2 logL

∂α2
= − n

α2
+

n∑
i=1

(Gx)2

(1− αGx)2
+

n∑
i=1

(Gx+1)2

(1− αGx+1)2
,

∂ logL

∂α∂σ
= −

n∑
i=1

G
′
x

(1− αGx)2
−

n∑
i=1

G
′
x+1

(1− αGx+1)2
,

∂2 logL

∂σ2
=

n∑
i=1

(Gx −Gx+1)(G
′′
x −G

′′
x+1)− (G

′
x −G

′
x+1)2

(Gx −Gx+1)2

+α

n∑
i=1

G
′′
x − αGxG

′′
x + α(G

′
x)2

(1− αGx)2
+ α

n∑
i=1

G
′′
x+1 − αGx+1G

′′
x+1 + α(G

′
x+1)2

(1− αGx+1)2
,

where G
′′
x = ∂2G(xi|σ)

∂σ2 .
The Fisher information matrix can be estimated by using the following approximations

E

(
−∂

2 logL

∂α2

)
≈ − ∂2 logL

∂α2

∣∣∣∣
(α̂,σ̂)

,

E

(
−∂

2 logL

∂α∂σ

)
≈ − ∂2 logL

∂α∂σ

∣∣∣∣
(α̂,σ̂)

,

E

(
−∂

2 logL

∂σ2

)
≈ − ∂2 logL

∂σ2

∣∣∣∣
(α̂,σ̂)

.

4. Some members of new discrete family of distributions

4.1. Discrete exponential distribution

The cdf and survival function of exponential distribution with scale parameter σ are respectively as
follows

G(x|σ) = 1− e−x/σ and G(x|σ) = e−x/σ.
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Now the pmf of new distribution using equation (3) is given by

px =
α[e−x/σ − e−(x+1)/σ]

(1− αe−x/σ)(1− αe−(x+1)/σ)
, x = 0, 1, 2, . . .

This distribution is obtained and studied by Gomez-Deniz (2010).

4.2. Discrete half-normal distribution

Let Φσ(x) be the cdf of normal distribution with mean zero and standard deviation σ > 0. Then survival
function of generalized half-normal distribution is

S(x;α, σ) =
(1 + α)Φσ(x)

1− αΦσ(x)
.

The pmf of generalized discrete half-normal distribution GDHN(α, σ) using equation (3) is given by

px =
(1 + α)[Φσ(x+ 1)− Φσ(x)]

(1− αΦσ(x))(1− αΦσ(x+ 1))
, x = 0, 1, 2, . . .

This distribution is obtained and studied by Gomez-Deniz et al. (2014).
We can obtain discrete half-logistic, discrete Rayleigh, discrete Weibull distributions as members of

newly defined discrete family of distributions. In the following we study a discrete generalized exponential
distribution in detail.

5. A generalized discrete exponential distribution:

Let Y1, Y2, . . . , Yβ be independent and identically distributed exponential random variables with mean
σ. Define X = max(Yi) then survival function of X is

G(x;σ) = 1− (1− e−x/σ)β , x > 0.

Let q = e−1/σ and β = 2 then the survival function can be written as

G(x) = 2qx − q2x, x > 0.

Then the pmf of generalized discrete exponential distribution using (3) is

px =
2αpqx − αp(1 + q)q2x

(1− α(2qx − q2x))(1− α(2qx+1 − q2(x+1))
, x = 0, 1, 2, . . . (8)

where p = 1− q.
A distribution having the pmf given in (8) is denoted by GDE(α, q), which is a member of DF (α, σ).
Now we study some properties of GDE(α, q). Using Lemmas 2.1, 2.3, 2.4, 2.5 and 2.6 some results related

to GDE(α, q) are given in the following.

a) The cdf and survival function:

F (x;α, q) =
1− qx+1(2− qx+1)

1− αqx+1(2− qx+1)
, x = 0, 1, 2, . . .

P (X ≥ x;α, q) =
αqx(2− qx)

1− αqx(2− qx)
, x = 0, 1, 2, . . .
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b) The probability generating function (pgf):

Px(s) = 1 + α(s− 1)

∞∑
x=1

(sx−1)
2qx − q2x

1− α(2qx − q2x)
.

c) Mean and variance:

E(X) = α

∞∑
x=1

2qx − q2x

1− α(2qx − q2x)

V (X) = α

∞∑
x=1

(2x− 1)
2qx − q2x

1− α(2qx − q2x)
−

[
α

∞∑
x=1

2qx − q2x

1− α(2qx − q2x)

]2
.

d) The recurrence relation for probabilities:

px+1 =

[
(1− qx+2)2 − (1− qx+1)2

] [
1− α(2qx − q2x)

]
[(1− qx+1)2 − (1− qx)2] [1− α(2qx+2 − q2x+4)]

px , x = 0, 1, 2, . . .

where p0 = 1−(2q−q2)
1−α(2q−q2) .

e) Quantile (xv) and median (x0.5)

xv =

 log
(

1−
√

αv
1−αv

)
log q

− 1

 ,

x0.5 =

 log
(

1−
√

( α
1+α

)
log q

− 1

 ,
where [·] denotes the integer part.

Here G(x) = 2qx − q2x and

∂G(x)

∂q
= 2xqx−1 − 2xq2x−1 = 2xqx−1(1− qx) > 0.

Hence by Theorem 2.7, The mean increases with respect to each of parameters α and q.
Mean and the variance of the GDE(α, q) are calculated for various values of α and q. These are shown

in Table 1. It is observed that, for 0 < q < 0.5 and α > 1, the distribution is underdispersed and the mean
increases faster than the variance. Hence, the parameter can be adjusted to suit most of the data sets.

Pmf of GDE(α, q) for various values of α and q is plotted and shown in Figure 1. In the Figure 1, we
see that if α is large then the mode moves to the right, indicating that for large α, distribution attains
symmetry and that for the small values of α, the distribution is positively skewed.

5.1. Maximum likelihood estimation of α and q

Suppose x1, x2, . . . , xn is a random sample of size n obtained from GDE(α, q). The log-likelihood function
is given by

logL = n logα+

n∑
i=1

log(2qxi − q2xi − 2q(xi+1) + q2(xi+1))

−
n∑
i=1

log(1− α(2qxi − q2xi))−
n∑
i=1

log(1− α(2q(xi+1) − q2(xi+1))).



Supanekar and Shirke / ProbStat Forum, Volume 08, April 2015, Pages 83–94 91

Figure 1: Probability mass function of GDE(α, q) for different values of the α and q.
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Table 1: Mean and variance (in parentheses) of the generalized discrete exponential distribution for varying α and q.

α/q 0.1 0.25 0.5 0.75 0.9
0.1 0.0252 0.09 0.3591 1.397 4.6657

(0.0295) (0.1288) (0.7028) (4.4067) (32.5559)
1 0.2121 0.6 1.6667 4.7143 13.7353

(0.2163) (0.6756) (2.6666) (15.1835) (112.5444)
2 0.3628 0.9055 2.2994 6.2423 17.9062

(0.3279) (0.8962) (3.4383) (19.6143) (145.4489)
5 0.643 1.392 3.2802 8.6071 24.3589

(0.4604) (1.1608) (4.4367) (25.3811) (188.1366)
10 0.8917 1.8065 4.1111 10.6096 29.8192

(0.5265) (1.3314) (5.0998) (29.2197) (216.3557)

Hence the likelihood equations are

∂ logL

∂α
=

n

α
−

n∑
i=1

2qxi − q2xi
1− α(2qxi − q2xi)

−
n∑
i=1

2q(xi+1) − q2(xi+1)

1− α(2q(xi+1) − q2(xi+1))
, (9)

∂ logL

∂q
= 2

n∑
i=1

xiq
xi−1(1− qxi)− (xi + 1)qxi(1− qxi+1)

(1− qxi+1)2 − (1− qxi)2

+α

n∑
i=1

xiq
xi−1(1− qxi)

1− α(2qxi − q2xi)
+ α

n∑
i=1

(xi + 1)qxi(1− qxi+1)

1− α(2qxi+1 − q2xi+2)
. (10)

Solving equations (9) and (10) simultaneously, we get maximum likelihood estimators of α and q.

5.2. Examples

In this section, we present data sets to examine the fitting of a newly proposed generalized discrete
exponential distribution. The data set presented in Table 2 gives fish catch data (Kemp, 1992) and in Table
3 gives results of ten shots fired from a rifle at each of 100 targets (Consul and Jain, 1973).

Table 2 and Table 3 provide the expected frequencies and corresponding chi-square values of newly
introduced generalized discrete exponential distribution and compared with values of generalized geometric
distribution (GG) calculated by Gomez-Deniz et al. (2010).

From these Table 2 and Table 3 we observe that GDE(α, q) is a good fit for data sets considered here.

6. Conclusions

In this paper we have introduced a new discrete family of distributions. This family includes discrete
exponential, discrete half logistic, discrete Rayleigh, discrete Weibull and many other discrete distributions.
We have studied distributional properties and estimation of parameters of the new discrete family of distri-
butions. For illustration we studied generalized discrete exponential distribution. The additional parameter
α plays an important role in this newly introduced discrete family of distributions. We can use these models
for real life situations.

The newly introduced discrete family of distributions is suitable for modeling discrete data and is a
better alternative to some other existing distributions.
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Table 2: Fish catch data Kemp (1992) counts of the number of European red mites on apple Leaves.

Number of Observed Expected Expected
mites per leaf frequency frequency (GDE) frequency (GG)

0 1 0.74 0.86
1 2 2.93 2.89
2 11 8.95 8.84
3 20 21.22 21.14
4 29 30.15 30.24
5 23 22.01 22.08
6 10 9.5 9.47
7 3 3.16 3.12
8 1 0.95 0.93

≥ 9 0 0.4 0.36
(α̂, q̂) (136.767, 0.29) (283.51,0.28)
χ2 0.83 (4 d.f.) 0.89 ( 4 d.f.)

(p− value, Lmax) (0.933, -177.668) (0.92, -177.722)
(x̄ = 4.04; s2 = 2.06)

Table 3: Results of ten shots fired from a rifle at each of 100 targets.

Number of Observed Expected Expected
hits frequency frequency (GDE) frequency (GG)

0 0 1.20 0.49
1 2 2.33 1.45
2 4 4.73 4.07
3 10 9.68 10.33
4 22 18.15 20.61
5 26 25.67 26.65
6 18 22.21 20.26
7 12 11.15 10.04
8 4 3.69 3.94
9 2 0.93 1.40

10 0 0.19 0.48
(α̂, q̂) (191.381, 0.338) (394.75, 0.33)
χ2 0.73 (4 d.f.) 0.76 (4 d.f.)

(p− value, Lmax) (0.946, -191.771) (0.94, -190.868)
(x̄ = 5; s2 = 2.64)
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